3 зоны пожара. Развития пожара и его зоны

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Пространство, в котором развивается пожар, условно подразделяется на три зоны:

  • зона горения;
  • зона теплового воздействия;
  • зона задымления.

Зона горения – часть пространства, в котором протекают процессы термического разложения (пиролиза) или испарения горючих веществ и материалов (твердых, жидких, газов, паров) в объеме диффузионного факела пламени. Горение может быть пламенным и беспламенным . Пламенное горение подразделяют на гомогенное – когда исходные компоненты (окислитель и горючее) находятся в одном агрегатном, газовом, состоянии и гетерогенным – когда окислитель и горючее находятся в разных фазах. При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий слой пламени (зона реакции окисления), при беспламенном – раскаленная поверхность горящего вещества (кокс, древесный уголь, тление войлока, торфа, хлопка и т.д.).

Зона теплового воздействия – часть пространства, примыкающая к границам зоны горения, где протекают процессы теплообмена между поверхностью пламени, окружающими конструкциями и горючими материалами.

Передача теплоты в окружающую среду осуществляется тремя способами:

  • конвекция – перенос тепловой энергии путем перемещения или перемешивания частиц жидкости или газа;
  • тепловое излучение (лучистый теплообмен) – перенос тепловой энергии в виде электромагнитных волн;
  • теплопроводность – перенос тепловой энергии при непосредственном соприкосновении веществ, материалов и конструкций.

Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без тепловой защиты.

Зона задымления – часть пространства, примыкающего к зоне горения в котором невозможно пребывания людей без защиты органов дыхания и в котором затрудняются боевые действия подразделений пожарной охраны из-за недостатка видимости.

В процессе развития пожара различают три стадии:

* начальная стадия;

* основная (развитая) стадия;

* конечная стадия.

Эти стадии характерны для всех пожаров независимо от того, где произошел пожар:

на открытом пространстве или в помещении.

I фаза (10 мин)- начальная стадия, включающая переход возгорания в пожар (1-3 мин) и рост зоны горения (5-6 мин).

Преимущественно линейное распространение огня вдоль горючего в-ва или материала.

Обильное дымовыделение. Среднеобъемная температура повышается до 200ºС с темпом 15ºС мин. Приток воздуха сначала увеличивается, а затем медленно снижается.

В это время важно обеспечить герметичность помещения (самозатухание пожара) и вызвать пожарные подразделения. Если очаг пожара виден, необходимо принять меры к тушению первичными средствами пожаротушения до прибытия подразделений.

Продолжительность I фазы – 2-30% от общей продолжительности пожара.

Пространство, в котором развивается пожар, условно подразделяется на три зоны: горения, теплового воздействия и зона задымления.

Зоной горения называется часть пространства, в котором протекают процессы термического разложения или испарения горючих


Рис 1.4 Зона горения на пожаре: а - на открытом пространстве; б,в - в ограждениях

//////////// ////// /// /// /// /// //,

веществ и материалов (твердых, жидких, газов, паров) в объеме диффузионного факела пламени. Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным). При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления), при беспламенном - раскаленная поверхность горящего вещества.

Примером беспламенного горения может служить горение кокса, древесного угля, тление, например, войлока, торфа, хлопка и т.д.

Границы зоны при пламенном горении схематично показаны на (ри . 1.4 ,)

Зона теплового воздействия примыкает к границам зоны горения. В этой части пространства протекают процессы теплообмена между поверхностью пламени, окружающими конструкциями и горючими материалами. Передача теплоты в окружающую среду осуществляется рассмотренными ранее способами: конвекцией, излучением, теплопроводностью. Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состоя,ия материалов, конструкций и создает невозможные условия для пребывания людей без средств тепловой зашиты.

Под Зоной Задымления понимается часть пространства, примыкающего к зоне горения, в котором невозможно пребывание людей без средств зашиты органов дыхания и в котором затрудняется ведение действий подразделений пожарной охраны из-за недостатка видимости.

При пожарах в зданиях и сооружениях опасные факторы пожара являются основным препятствием для успешного ведения действий личным составом, создают опасность для жизни и здоровья людей, оказавшихся в зоне задымления. Особое значение зона задымления накладывает на обстановку пожара особенно в зданиях повышенной этажности и на объектах с массовым пребыванием людей. Кроме того,

работа личного состава в задымленных помещениях требует определенных умений и навыков, высокой физической, морально-волевой и психологической подготовки, применение звеньев ГДЗС.

Зона задымления может включать в себя всю зону теплового воздействия и значительно превышать ее.

Границами зоны задымления считаются места, где плотность дыма составляет 1-lCr 4 - 6-10 - 4 кг/м 3 , видимость предметов 6-12 м, концентрация к10орода в дыме не менее 16% и токсичность газов не представляет опасности для людей, находящихся без средств защиты органов дыхания.



Практически установить границы зон при пожаре не представляется возможным, так как происходит их непрерывное изменение, и можно говорить лишь об условном их расположении.

В процессе развития пожара различают три стадии: начальную, основную (развитую) и конечную. Эти стадии характерны для всех пожаров независимо от того, где произошел пожар: на открытом пространстве или в помещении.

Начальной стадии соответствует развитие пожара от источника зажигания до момента, когда помещение будет полностью охвачено пламенем. На этой стадии происходит нарастание температуры в помещении и снижение плотности газов в нем. При этом количество удаляемых газов через проемы больше, чем количество поступающего воздуха вместе с перешедшим в газообразное состояние горючими материалами и веществами.

На начальной стадии пожара воздух и продукты горения в помещении увеличиваются в объеме, создается избыточное давление до нескольких десятков Паскалей, в результате чего газовая смесь выходит из него через неплотности в стыках строительных конструкций, зазоры в притворах дверей, окон, воздуховоды и другие отверстия. Горение поддерживается кислородом воздуха, находящимся в помещении, концентрация которого постепенно снижается. Если помещение достаточно изолировано от окружающей среды, например не нарушено остекление оконных проемов или они вообще отсутствуют, плотно закрыты двери и перекрыты заслонки на воздуховодах, развитие процесса горения в нем может замедлиться или прекратиться вообще. В противном случае, на начальной стадии пожара горение распространяется на значительную площадь помещения, прогреваются конструкции и материалы, среднеобъемная температура в помещении поднимается до 200-300°С, в дыму возрастает содержание оксида и диоксида углерода, происходит интенсивное дымовыделение и снижается видимость.



В зависимости от объема помещения, степени его герметизации и распределения пожарной нагрузки начальная стадия пожара продолжается 5-40 мин (иногда и более - до нескольких часов). Однако, опасные для человека условия возникают уже через 1-6 мин.


Эта стадия пожара, как правило, не оказывает существенного влияния на огнестойкость строительных конструкций, поскольку температура пока еще сравнительно невелика.

В связи с тем, что линейная скорость распространения пламени величина не постоянная и зависит от множества факторов, а также от стадии развития пожара, при практических расчетах геометрических параметров пожара в расчете сил и средств тушения в первые 10 минут развития в закрытых помещениях она принимается с коэффициентом 0,5. Уменьшение линейной скорости развития пожара в два раза отражает факт замедления процесса горения на первой стадии.

Основной стадии развития пожара в помещении соответствует повышение среднеобъемной температуры до максимума. На этой стадии сгорает 80-90% объемной массы горючих веществ и материалов, температура и плотность газов в помещении изменяется во времени незначительно. Данный режим развития пожара называется квазистационарным (установившимся), при этом расход удаляемых газов из помещения приблизительно равно притоку поступающего воздуха и продуктов пиролиза.

На конечной стадии пожара завершается процесс горения и постепенно снижается температура. Количество уходящих газов становится меньше, чем количество поступающего воздуха.

1.4. Газообмен на пожаре

Управление газовыми потоками при тушении пожара является важным оперативно-тактическим действием, выполняемым с целью создания условий, способствующих успешному тушению пожара и проведению аварийно-спасательных работ.

С помощью изменения газообмена на пожаре возможно уменьшить размеры зоны задымления, изменить направление распространение горения, влиять на скорость процессов, протекающих в зоне горения и тл.

Под интенсивностью газообмена понимается скорость притока воздуха к зоне горения. Нагретые продукты горения в зоне реакции из-за меньшей плотности по сравнению с плотностью поступающего в помещение воздуха поднимается вверх, создавая избыточное давление. В нижней части помещения из-за снижения парциального давления кислорода в воздухе, участвующего в реакции окисления, создается разрежение. Высота в помещении, на которой давление в его объеме равно наружному или давлению в соседнем помещении, называется уровнем равных давлений. Нетрудно предположить, что выше этого уровня помещение заполнено дымом, ниже - концентрация продуктов горения не препятствует нахождению личного состава пожарных подразделений без средств защиты органов дыхания. Если на,ровне равных давлений в помещении провести условную плоскость, то ее можно назвать плоскостью равных давлений. Наступает момент когда

часть проема, работавшего только на приток к зоне горения свежего воздуха, начинает работать и на выпуск продуктов горения, снижая тем самым рабочую зону (ее высота около 1,5-2 м от уровня пола), т.е. зону возможной работы личного состава.

Опускание уровней равных давлений может наступить и от неправильных действий личного состава пожарных подразделений. Например, нарушение соотношения площадей приточных и вытяжных проемов, которое может иметь место в процессе развертывания и проникновения ствольщиков к очагу горения.

Чем ниже располагается уровень равных давлений, тем больший объем занимает зона задымления, возникает опасность распространения продуктов горения в смежные с горящим помещения, возникновения в них очагов пожаров за счет теплосодержания газовой смеси.

Чтобы успешно бороться с пожарами, личный состав пожарных подразделений должен знать способы управления газовыми потоками на пожаре.

Первым из них можно назвать изменение аэрации здания, т.е. усиление естественного воздухообмена в нем, что можно достичь изменением площадей приточных и вытяжных проемов, т.е. открывая или закрывая существующие в здании окна, двери, проделывая отверстия в ограждающих конструкциях, устанавливая перемычки.

Уровень равных давлений всегда располагается ближе к тем проемам, вытяжным или приточным, площадь которых больше. Следовательно, в условиях тушения пожаров можно регулировать высоту уровня равных давлений в помещениях, создавать рабочую зону, свободную от дыма. Однако не следует забывать и тот факт, что площади приточных и вытяжных проемов в помещении должны находиться в определенном соотношении. Оптимальное соотношение площадей проемов играет не последнюю роль и в оптимизации действий личного состава пожарных подразделений. Например, значительное превышение площадей вытяжных проемов над площадью приточных может привести к значительным скоростям воздуха через последние, перепаду давления снаружи и внутри горящего помещения, создающему трудности в работе при открывании дверных полотнищ, др. С этой целью рекомендуется, чтобы площадь вытяжных отверстий была больше площади приточных. В обстановке тушения пожара это соотношение достигается путем вскрытия или перекрытия соответствующих проемов, вскрытия дополнительных отверстий в ограждающих конструкциях помещения.

Если же по обстановке на пожаре требуется ввод сил и средств через дополнительное количество нижних проемов, необходимо в рекомендованных выше соотношениях увеличивать площадь верхних, через которые удаляются продукты сгорания.

Вторым способом является применение принудительной вентиляции с использованием пожарных дымососов (вентиляторов).


Применение последних должно быть особо оговорено в оперативно-тактической документации, разрабатываемой на защищаемый объект. В противном случае не исключено скрытое распространение горения из одного помещения в другое по вентиляционным каналам и воздуховодам.

"ST

Рис 1.5 Cхемы работы дымососов :

а ) при наличии одного проема в помещении ;

б при нескольких проемах в помещении .


использование части из них на нагнетание воздуха в горящее помещение, а части - на удаление дыма из него (рис. 1.5).

Третий способ заключается в применении личным составом пожарных подразделений соответствующих огнетушащих веществ. Например, изменение направления движения газообразных масс при пожарах в помещениях можно достигнуть путем постановки перемычек в проемах, создания преград для распространения дыма из воздушно-механической пены средней и высокой кратности. Пена эффективно применяется и для вытеснения дыма из помещения. Но при выполнении этого способа следует принять меры к беспрепятственному продвижению ее в помещение путем вскрытия отверстий для выпуска дыма.

В процессе тушения пожара личный состав пожарных подразделений нередко применяет распыленную воду. При этом твердые частички углерода, находящиеся в дыму, осаждается за счет увлажнения, температура в помещении снижается, уменьшается концентрация некоторых растворимых в воде токсичных продуктов горения, а значит создаются более благоприятные условия для ведения действий по тушению пожаров.


ГЛАВА 2.
ГОРЕНИЯ

ПРЕКРАЩЕНИЕ НА ПОЖАРАХ

В данной главе рассматриваются вопросы, связанные с прекращением горения, ограничением интенсивности его развития и распространения наиболее простыми и эффективными средствами.

Большое внимание заслуживают параметры и условия, за границами которых горение не может протекать.

Прежде всего сюда следует отнести: концентрационные пределы распространения пламени, температурные пределы распространения пламени и ряд других параметров, которые являются производными от этих пределов.

Процессы горения не могут протекать вне значений указанных параметров, т.е. процессы горения либо не возникают, а если они существовали, то прекратятся.

Эти параметры представляют интерес для пожарной тактики в связи с тем, что возникает возможность оказывать влияние на эти величины и, изменяя тем или иным образом условия, можно добиться прекращения горения.

На основе этих параметров можно сформулировать основные направления и способы прекращения горения: снижение скорости тепловыделения или увеличение скорости теплоотвода от зоны горения.

Основой является снижение температуры зоны горения до значений ниже температуры потухания. Достигнуть этого можно на основе четырех известных принципов прекращения горения: охлаждения реагирующих веществ; изоляции реагирующих веществ от зоны горения; разбавления реагирующих веществ до негорючих концентраций, не поддерживающих горение; химического торможения реакции горения.

Для этих целей применяются различные огнетушащие вещества.

2.1. Классификация огнетушащих веществ, способов и приемов прекращения горения

Под огнетушащими веществами в пожарной тактике понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.).

Огнетушащих веществ в природе много. Кроме того, современная технология позволяет получать такие огнетушащие вещества, которых нет в природе. Однако не все огнетушащие вещества принимаются на вооружение пожарных подразделений, а лишь те, которые отвечают определенным требованиям. Они должны:

обладать высоким эффектом тушения при сравнительно малом расх·е;

быть доступными, дешевыми и простыми в применении;

не оказывать вредного действия при их применении на людей и мате·иалы, быть экологически чистыми.

По основному (доминирующему) признаку прекращения горения огнетушащие вещества подразделяются на:

охлаждающего действия (вода, твердый диоксид углерода и др.);

разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода и т.п.) ;

изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.);

ингибирующего действия (галоидированные углеводороды: бромистый метилен, бромистый этил, тетрафтордибромэтан, огнетушащие составы на их основе и др.).

Однако следует отметить, что все огнетушащие вещества, поступая в зону горения, прекращают горение комплексно, а не избирательно, т.е. вода, являясь огнетушащим веществом охлаждения, попадая на поверхность горящего материала, частично будет действовать как вещество разбавляющего и изолирующего действия. Более подробно механизм прекращения горения водой и другими огнетушащими веществами будут рассмотрены ниже.

Вид и характер выполнения действий по тушению пожаров в определенной последовательности, направленных на создание условий прекращения горения, называется способом прекращения горения.

В зависимости от основного процесса, приводящего к прекращению горения, способы тушения можно разделять на четыре группы (рис. 2.1):

охлаждения зоны горения или горящего вещества;

разбавления реагирующего вещества или горючего;

изоляции реагирующих веществ от зоны горения;

химического торможения реакции горения. Способы прекращения горения, основанные на принципе охлаждения реагирующих веществ или горящих материалов, заключаются в воздействии на них охлаждающими огнетушащими веществами; основанные на изоляции реагирующих веществ от зоны горения - в создании между зоной горения и горючим материалом или окислителем изолирующего слоя из огнетушащих материалов и веществ; основанные на разбавлении реагирующих веществ или химическом торможении реакции горения - в создании в зоне горения или вокруг нее негорючей газовой или паровой среды.

Подведем некоторые итоги вышесказанного, оформив их в виде схемы (рис.2.2).

Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание


ПРЕКРАЩЕНИЕ ГОРЕНИЯ Т < Т ^ г п
УВЕЛИЧЕНИЕ СКОРОСТИ ТЕПЛООТВОДА УМЕНЬШЕНИЕ СКОРОСТИ ТЕПЛОВЫДЕЛЕНИЯ
УВЕЛИЧЕНИЕ ПОВЕРХ­НОСТИ ТЕПЛ0ОТВ0ДА (ПРИМЕНЕНИЕ ОГНЕПРЕГРАДИТЕЛЕЙ СОПРИКОСНОВЕНИЕ ЗОНЫ РЕАКЦИИ С МЕНЕЕ НАГРЕТЫМ ВЕЩЕСТВОМ ФИЗИЧЕСКОЕ ТОРМОЖЕНИЕ PEAK ЦИИ ГОРЕНИЯ ХИМИЧЕСКОЕ ТОРМОЖЕНИЕ РЕАК­ЦИИ ГОРЕНИЯ
1 1
РАЗБАВЛЕНИЕ РЕАГИРУЮЩИХ ВЕЩЕСТВ ОХЛАЖДЕНИЕ ГОРЯЩЕГО ВЕЩЕСТВА ИЗОЛЯЦИЯ РЕАГИРУЮЩИХ ВЕЩЕСТВ ВВЕДЕНИЕ ГАЛОИДИРОВАННЫХ УГЛЕВОДОРОДОВ
ГОРЯЩЕГО ВЕЩЕСТВА ПОДАЧА ОХЛАЖДАЮЩИХ ВЕЩЕСТВ ГОРЮЧИХ ПАРОВ И ГАЗОВ В ВОЗДУХ ПОМЕЩЕНИЯ
ПАРОВ В ЗОНЕ ГОРЕНИЯ В ГОРЮЧЕЕ ВЕЩЕСТВО
ВОЗДУХА В ПОМЕЩЕНИИ ГОРЮЧИХ ВЕЩЕСТВ КИСЛОРОДА ВОЗДУХА НЕПОСРЕДСТВЕН­НО В ЗОНУ ГОРЕНИЯ

Рис. 2.1. Схема прекращения горения на пожарах

изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъемников, навесными струями и. т.п.

Приемы тушения - это те составные части способа прекращения горения, которые могут изменяться в процессе действий пожарных подразделений при изменении обстановки на пожаре, могут изменяться и способы. Применение того или иного способа и приема прекращения горения, огнетушащего вещества зависит от:

условий и характера развития пожара;

свойств и состояния горючих материалов;

трудоемкости и безопасности выполняемой работы личным сост·ом;

наличие у руководителя тушения пожара сил и средств;

готовности пожарных подразделений и др. ·се это направлено на наименьшие убытки и затраты.

ТОРМОЖЕНИЕ РЕАКЦИИ ГАЛО-ИДОПРОИЗВОД-

РАЗБАВЛЕНИЕ ГОРЮЧИХ ЖИДКОСТЕЙ ВОДОЙ

2.2. ПОЖАР И ЕГО РАЗВИТИЕ

Классификация пожаров. Пожаром называется неконтролируемое горение вне специального очага, наносящее материальной ущерб. Неконтролируемое горение вне специального очага, не причинившее ущерба, называется загоранием. Основным фактором, определяющим материальный ущерб, наносимый пожаром, является стоимость сгоревших или пришедших в негодность конструкций зданий и сооружений, конструктивных элементов воздушных судов, оборудования и т.п. Иногда пожары приводят к гибели людей в результате их отравления дымом, содержащим высокотоксичные продукты термического разложения пластмасс и продуктов неполного сгорания, а также воздействия высокой температуры пожара, высокого уровня теплового излучения пламени и других причин.

Пожары классифицируются:

по внешним признакам - на наружные и внутренние, одновременно наружные и внутренние, открытые и скрытые, одновременно открытые и скрытые;

по месту возникновения - на воздушных судах, в зданиях, на открытых площадках, на лесных массивах и т.д.;

по времени введения сил и средств - на незапущенные и запущенные.

Все пожары отличаются друг от друга своими параметрами. Невозможно отыскать даже двух пожаров, абсолютно идентичных по параметрам развития. Однако для всех пожаров характерно наличие определенных явлений, без знания и учета которых невозможна организация борьбы с пожарами. К этим явлениям относятся:

взаимодействие в слое пламени горючего вещества с кислородом воздуха иди другим окислителем;

выделение в зоне горения тепла и продуктов сгорания;

передача тепла и распространение продуктов сгорания;

при горении в замкнутых объемах термическое разложение горючих материалов и веществ с выделением в воздушный объем высокотоксичных веществ - продуктов неполного сгорания.

Помимо этого, пожары могут сопровождаться обрушением конструктивных элементов зданий и сооружений, интерьера пассажирских салонов, деформацией и разрушением планера воздушного судна, взрывами крыльевых и центропланных топливных баков воздушных судов, образованием взрывоопасных смесей продуктов неполного сгорания с кислородом воздуха и т.п.

Зоны пожара. Пространство, в котором происходят пожар и сопровождающие его явления, делится на три зоны: горения, теплового воздействия и задымления.

Зона горения представляет собой часть пространства, в которой происходят подготовка горючих веществ и материалов к горению (расплавление, испарение, разложение) и их непосредственное горение. Она включает в себя объем паров и газов, ограниченный тонким слоем пламени и поверхностью горящих веществ, с которой пары и газы поступают в объем зоны и пламя.

Зона теплового воздействия представляет собой часть пространства, окружающего зону горения. Тепловое воздействие приводит к заметному изменению состояния вещества и материала и делает невозможным пребывание в этой зоне людей без средств тепловой защиты. При наличии в зоне горючих веществ и материалов происходит их термическая подготовка к горению и создается реальная угроза дальнейшего распространения пожара. При пожарах внутри помещений тепловое воздействие ограничено конструктивными элементами, тепло передается главным образом конвекцией и теплопроводностью. При наружных пожарах тепловое воздействие в виде теплового излучения распространяется во все стороны полусферы, не экранируемые конструкциями зданий, планером воздушного судна или другими сооружениями и оборудованием.

Зона задымления представляет собой часть пространства, примыкающую к зоне горения и заполненную дымовыми газами и продуктами термического разложения в концентрациях, создающих угрозу жизни и здоровья людей и затрудняющих действия пожарно-спасательных подразделений по проведению аварийно-спасательных работ.

Все перечисленные зоны на каждом пожары различны как по размерам и форме, так и по характеру протекания процессов.

Параметры пожара. Они не постоянны и изменяются во времени. Изменение их от начала возникновения горения до его прекращения называется развитием пожара. Условия развития пожара характеризуются следующими основными параметрами: линейной скоростью распространения огня по поверхности горючих веществ и материалов, удельной теплотой пожара, количеством горючих веществ и материалов в зоне горения, размерами пламени, скоростью выгорания горючих веществ и материалов, скоростью прогрева и задымления воздушного объема при внутриобъемных пожарах.

Линейная скорость распространения огня (фронта пламени) по поверхности горючих веществ и материалов характеризует начальную стадию развивающегося пожара и зависит от многих параметров: вида горючих веществ и материалов, их химического состава и агрегатного состояния, температуры наружного воздуха при горении жидкостей, температуры зоны горения, метеоусловий и т.п. От линейной скорости зависит время протекания начальной стадии пожара, когда идет рост его площади. Этот параметр является решающим при определении продолжительности введения средств тушения и их суммарной подачи. Линейная скорость распространения огня может составлять в среднем для авиатоплива ТС-1 от 1,2 до 1,4. м/с, а для декоративно-отделочных материалов пассажирских салонов от 0,8 до 1,2 м/мин.

Удельная теплота сгорания при пожаре (МВт/м 2) представляет собой количество теплоты, выделяющееся при пожаре с единицы площади в единицу времени:

где b- коэффициент химического недожога, равный 0,8-0,9;

Низшая удельная теплота сгорания горючего материала, МДж/кг;

v т - удельная массовая скорость выгорания материала, кг/(м 2 ×с).

Площадь выгорания жидкостей при расчетах относят к площади зеркала жидкости в спокойном состоянии. Анализ протекания процесса пожара авиатоплива ТС-1 показывает, что начальная стадия развития пожара, характеризующаяся постоянным увеличением теплового потока, в зависимости от различных условий может длиться от 1 до 4 мин.

Общая теплота сгорания при пожаре (МВт), от которой зависит характер теплового воздействия пожара,

q = q 0 p(v i t) 2 = q 0 Е п,

где v i - линейная скорость распространения огня, м/с;

t - свободное время горения, с ;

Е п - максимальная площадь пожара, м 2 .

Продолжительность, скоротечность, размеры пожара, а следовательно, время и результаты воздействия его факторов на элементы зданий, сооружений, воздушных судов, а также на людей, находящихся в его зонах, во многом определяются размерами и характером горючей загрузки. Под ней понимается количество (масса) всех сгораемых и трудносгораемых веществ, материалов и конструктивных элементов, находящихся в помещении или на открытой площадке, отнесенное к единице площади пола помещения или открытой площадки. При пожарах на ВС горючая загрузка может достигать больших значений. Например, для самолета Ил-62 она равна ~ 200 кг/м 2 , из которых при полной топливной загрузке 130 кг/м 2 составляет авиационное топливо ТС-1, являющееся легковоспламеняющейся жидкостью III разряда.

Пламя. Это внешнее проявление горения газа, пара или взвеси. Пламя образуется тонким газовым слоем (оболочкой), в котором и происходит собственно горение. Этот газовый слой обычно имеет высокую температуру, развивающуюся за счет тепла, выделяющегося в результате горения. Горение всех веществ и материалов, применяющихся в самолетостроении и при эксплуатации воздушных судов (авиатоплива, гидрожидкости, спиртов, декоративно-отделочных материалов, магниевых сплавов), сопровождается пламенем. Образование пламени обусловлено тем, что практически все горючие материалы под воздействием тепла источника воспламенения выделяют горючие пары и газы. Отдельные металлы (титан, алюминий) могут гореть на поверхности детали или слитка.

Пламя всегда излучает тепло. Это излучение при послеаварийных пожарах во время авиационных происшествий может иметь самое различное значение (от 135 кВт/м 2 при горении авиатоплива и пластмасс до 6180 кВт/м 2 при горении магниевых или титановых сплавов). Характер пламени во многом зависит от количества кислорода, содержащегося непосредственно в горящем веществе. Если в состав вещества входит 50% и более кислорода, то пламя несветящееся. Если содержание кислорода 50%, то пламя становится светящимся. При содержании углерода более 80% вещества и материалы горят светящимся пламенем, в котором содержится большое количество сажи (коптящее пламя). Коптящим пламенем горят практически все материалы, находящиеся на борту воздушного судна. Исключение составляют пламени спиртов и металлов, последние при горении выделяют плотный белый дым.

Основным горючим материалом при наземных послеаварийных пожарах на воздушных судах служит авиатопливо, вытекающее из разрушенной топливной системы потерпевшего аварию самолета и покрывающее некоторую площадь. В случае его воспламенения образуется пламя различных размеров как по площади, так и по высоте. Площади, занимаемые разлитыми авиатопливами, могут быть весьма значительными (для воздушных судов 8-й категории УТПЗ расчетная площадь возможного пожара равна 1320 м 2). Принимая во внимание максимально возможную высоту пламени, можно представить себе хотя бы приближенно объем зоны горения. Для воздушных судов 8-й категории УТПЗ этот объем может составлять около 20000 м 3 .

Поскольку пламя, представляющее истинную поверхность горения, является турбулентным и постоянно изменяет свои геометрические размеры и очертания, для удобства расчетов за поверхность горения принимается поверхность жидкости или твердых материалов, с которой пары и газы поступают в зону горения.

Скорость выгорания. Различные горючие вещества и материалы имеют разные скорости выгорания. За скорость выгорания принимается изменение массовых или геометрических параметров горючего вещества или материала во времени в процессе его горения. Скорости выгорания могут быть массовыми, объемными или линейными и соответственно иметь следующие размерности: кг/(м 2 ×с), мм/мин, см/ч. Например, для авиатоплива ТС-1 эти скорости равны: массовая 4,8×10 -3 кг/(м 2 ×с) и линейная 3,6 мм/мин (по высоте столба жидкости).

Скорость выгорания зависит от ряда параметров, основными из которых являются химический состав и агрегатное состояние вещества или материала. Наибольшими скоростями выгорания обладают вещества и материалы, имеющие высокую степень раздробленности, т.е. газы, пары и пыли. Гораздо меньшие скорости выгорания имеют жидкости и относительно невысокими скоростями выгорания обладают твердые горючие вещества и материалы. Причем, чем тверже и тяжелее вещество или материал, тем меньше его скорость выгорания.

Знание скорости выгорания того или иного горючего материала необходимо при проведении расчетов для организации работы пожарно-спасательных подразделений и обеспечения тепловой защиты людей, техники и конструктивных элементов объектов в случае возникновения пожара.

При горении различных по своему составу веществ и материалов выделяются неодинаковые количества тепла. Количество тепла, выделившееся при полном сгорании единицы массы или объема горючего вещества, называется теплотой сгорания. Различают высшую и низшую удельные теплоты сгорания. Высшей удельной теплотой сгорания Q в называется количество тепла, выделяемое при полном сгорании 1 кг или 1 м 3 горючего вещества при условии, что содержащийся в нем водород сгорает с образованием жидкой воды. Низшей удельной теплотой сгорания называется количество тепла, выделяемое при сгорании 1 кг или 1 м 3 горючего вещества при условии сгорания водорода до образования водяного пара и испарения влаги, содержащейся в горючем веществе или материале.

В расчетах принимают низшую удельную теплоту сгорания. Так, низшая удельная теплота сгорания отдельных материалов, которые могут гореть при пожаре, сопровождающем авиационное происшествие, равна: авиационного топлива ТС-1 - 42,91 МДж/кг; поролона (пенополиуретана) - 24,28 МДж/кг; органического стекла - 27,72 МДж/кг.

Основные виды теплопередачи. При пожарах все тепло, выделившееся в результате сгорания различных веществ и материалов, передается в окружающую среду посредством теплопередачи. Теплопередача - это самопроизвольные необратимые процессы передачи тепла от одного тела к другому и распространения тепла в физических телах. Тепло всегда передается от более нагретого к менее нагретому телу. Перенос тепла может осуществляться тремя путями: теплопроводностью, конвекцией и тепловым излучением. На практике передача тепла осуществляется, как правило, комбинированным способом.

Теплопроводность - это процесс, при котором передача тепла происходит между соприкасающимися телами, имеющими разную степень нагрева, т.е. разную температуру. Этот процесс осуществляется за счет движения микрочастиц тел. Например, прогрев конструктивных элементов внутри ВС при горении разлитого авиатоплива происходит в результате передачи тепла от обшивки планера, контактирующей с пламенем горящего топлива, к внутренним конструкциям и декоративно-отделочным материалам.

Конвекция - это процесс переноса тепла, происходящий в жидкой и газообразной среде с неоднородным распределением температур и скоростей, за счет перемещения и перемешивания микрочастиц среды. При конвекции всегда имеет место и теплопроводность, поэтому совместный процесс называют конвективным теплообменом. Примером может служить прогрев воздушного объема пассажирских салонов во время внутриобъемного пожара или наружного пожара разлитого авиатоплива. Здесь, как и в большинстве пожаров, имеет место свободная конвекция; при которой движение газовых масс происходит при наличии разности плотностей среды в объеме кабин.

Тепловое излучение - это перенос тепла излучением вследствие электромагнитных колебаний, испускаемых нагретым теплом. Лучистая энергия, испускаемая одним из тел, встречая на своем пути другие тела, частично поглощается (при этом она снова переходит во внутреннюю энергию тела), частично отражается и частично проходит сквозь тела. Лучи, называемые тепловыми, в наибольшей мере обладают свойствами поглощения и перехода их энергии во внутреннюю энергию тел. Они имеют длины волн в диапазоне от 0,4 до 40 мкм. У твердых тел количество излучаемой энергии зависит от их состава и состояния поверхности. Для всех тел характерно увеличение излучения с повышением температуры тела, а для газов - также и с увеличением газового слоя и давления в нем. Согласно закону Вина тепловое излучение пламени горящего авиатоплива ТС-1 в диапазоне температур от 1050 до 1250 °С имеет длины волн от 2,19 до 1,9 мкм, а тепловое излучение пламени магниевых сплавов из-за гораздо большей температуры может иметь длину волн, равную 0,885 мкм. Таким образом, при горении авиатоплива для тепловой защиты достаточно иметь любую одежду и прозрачное защитное стекло, а при горении магниевых сплавов необходимо использовать затемненное защитное стекло, чтобы не получить ожога сетчатки глаз, так как в этом случае тепловое излучение сдвигается в видимый спектр излучения электромагнитных волн.

Температурный режим пожара. Им называется изменение температуры в процессе развития пожара. Температурные показатели являются одними из основных параметров, в обязательном порядке учитываемых при работе пожарно-спасательных подразделений на пожаре. При этом необходимо различать температуры наружного и внутреннего пожара.

При наружном пожаре за его температуру принимается среднеповерхностная температура пламени. На эту температуру оказывает влияние ряд факторов, основными из которых являются: вид горючего вещества или материала, его агрегатное состояние, температура наружного воздуха и др. Поскольку каждое из горючих веществ обладает определенной теплотой сгорания, то и температура пламени будет выше у того вещества, при сгорании которого выделяется большее количество тепла.

Агрегатное состояние вещества или материала оказывает значительное влияние на температуру горения. Чем выше дисперсность вещества, тем лучше оно перемешивается с окислителем, тем выше скорость горения и полнота сгорания, а значит, и температура горения. Так, горение толуола при испарении его со свободной поверхности сопровождается температурой пламени, не превышающей 1300 °С. При горении паров толуола, предварительно перемешанных с воздухом, процесс происходит со взрывом при температуре около 2860 °С. Соответствующим образом меняются значения температур, если горючим материалом является авиатопливо ТС-1.

Температура окружающей среды оказывает определенное влияние на процесс развития пожара и его температурный режим. Это происходит потому, что воздух, попадая в пространство, примыкающее к зоне реакции (пламени), охлаждает его. Так, при температуре окружающей среды - 38 °С среднеповерхностная температура пламени горящего авиатоплива ТС-1 составила 950 °С, в то время как при температуре окружающей среды 18 °С она была равна 1070 °С.

При внутриобъемных пожарах за их температуру принимается среднеобъемная температура помещения, в котором происходит пожар. Поэтому эти пожары по сравнению с наружными иногда называют низкотемпературными. Максимальная температура при этих пожарах находится в зоне горения и над ней. Минимальная температура - в наиболее удаленной от места горения зоне и по полу помещения. На температуру внутреннего пожара оказывают влияние следующие факторы: скорость развития пожара, прогрев окружающего оборудования и ограждающих конструктивных элементов, уровень газообмена и т.п.

Особенностью распределения температур при внутренних пожарах является то, что нарастание температуры по высоте помещения происходит весьма резко. Это наиболее заметно в помещениях, имеющих незначительную высоту. К ним можно отнести пассажирские салоны и багажные отсеки ВС, туннели, подвалы и т.п.

При пожарах в закрытом объеме (загерметизированные пассажирские салоны, багажные отсеки ВС) газообмен происходит за счет конвективных потоков газовоздушной смеси и диффузии кислорода в зону горения (пламя). В этом случае на развитие пожара основное влияние оказывает количество воздуха, находящегося в объеме помещения, где происходит пожар.

Для горения любого горючего вещества или материала необходимо определенное количество воздуха. Минимальное количество воздуха, необходимое для полного сгорания единицы массы или объема горючего вещества, называется теоретически необходимым. Например, для сгорания 1 кг авиатоплива ТС-1 требуется 14,85 кг, или 11,5 м воздуха, а для сухой древесины соответственно 5,4 кг, или 4,18 м 3 . Такая значительная разница обусловливается разностью химического строения материалов: в молекулах древесины присутствует кислород, участвующий в процессе горения, в химический состав авиатоплива кислород не входит. Помимо химического состава на необходимое количество воздуха оказывает влияние и агрегатное состояние горючих материалов. Для основной массы рыхлых и пористых материалов воздуха на горение требуется меньше, чем для более плотных.

Практически при горении во время пожара воздуха расходуется значительно больше теоретически необходимого количества. Разность между количествами воздуха, практически расходуемого на горение и теоретически необходимого, называется избытком воздуха. Отношение количества воздуха, практически расходуемого на горение W в.пр. , к теоретически необходимому W в называется коэффициентом избытка воздуха . В условиях наружных пожаров, когда горение протекает с естественным притоком воздуха, а значительно больше единицы и его значение может колебаться в широких пределах.

Продукты сгорания. Ими являются газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего материала с окислителем. В условиях пожара этим окислителем служит, как правило, кислород воздуха. Состав продуктов сгорания зависит от химического состава горючих материалов и условий горения. При пожарах чаще всего горят органические вещества и материалы (древесина, ткани, авиатоплива, резина, декоративно-отделочные материалы пассажирских салонов), в состав которых входят углерод, водород, кислород, азот и другие вещества. При их полном сгорании образуются следующие газообразные продукты сгорания: углекислый газ, окись углерода, вода, молекулярный азот, окислы азота и т.п. При коэффициенте избытка воздуха, близком к единице, происходит неполное сгорание горючих веществ и материалов, в результате чего в воздушный объем помещений или в зону задымления могут поступать различные недоокислившиеся вещества, являющиеся в большинстве своем высокотоксичными веществами, например синильная кислота, окись углерода, акрилонитрил, акролеин, фосген, хлористый и фтористый водород и т.п.

Помимо газо- и парообразных продуктов сгорания могут образовываться и твердые вещества в виде шлаков и мелких дисперсных частиц, состоящих из сажи и твердых окислов. Эти частицы из-за своего малого объема и массы находятся во взвешенном состоянии и увлекаются из зоны горения конвективными потоками, за счет чего и образуется дым. Диаметр частиц дыма весьма незначителен, и его размеры могут составлять от 0,01 до 1,00 мкм. Более крупные частицы с относительно большей массой выпадают из конвективного потока.

Объем дыма, образующегося при сгорании какого-либо горючего материала при коэффициенте избытка воздуха, равном единице, зависит от химического состава горючего вещества и может составлять: для бумаги и хлопчатобумажных тканей 4,8 м 3 ; для резины 10,8 м 3 ; для авиатоплива ТС-1 12,8 м 3 .

Цвет дыма зависит от его состава. Так, дым, содержащий сажу, имеет черный цвет, а содержащий окислы магния или значительное количество паров воды - более светлый цвет, доходящий до серого.

2.3. ОГНЕТУШАЩИЕ СОСТАВЫ

Способы прекращения горения. Работы советских ученых Я.Б. Зельдовича, Д.А. Франк-Каменецкого, В.И. Блинова и других позволили определить основные положения тепловой теории прекращения горения.

Прекратить горение - это значит остановить экзотермическую реакцию, происходящую в тонком светящемся слое зоны горения, называемом зоной реакции. В этой.зоне происходит выделение того тепла, за счет которого продукты горения нагреваются до определенного энергетического состояния. Одновременно с выделением тепла и нагревом продуктов сгорания происходит теплоотдача. Рост температуры прекращается, когда скорость выделения тепла становится равной скорости теплоотдачи. Таким образом, температура горения веществ и материалов не является постоянной величиной и изменяется в зависимости от соотношения скоростей выделения и отдачи тепла в зоне реакции.

Скорость выделения тепла в зоне диффузионного горения зависит от ряда факторов. При горении разлитого авиатоплива, когда концентрация кислорода постоянна и химический состав горючего вещества неизменен, скорость выделения тепла зависит от скорости диффузии реагирующих веществ в зону реакции, а также от теплоты горения и полноты сгорания горючего вещества.

Снизить температуру горения и тем самым прекратить процесс можно как увеличением скорости теплоотвода, так и путем уменьшения скорости тепловыделения. Практически снижение температуры зоны реакции достигается несколькими способами. Под способом прекращения горения понимается принятие действий, в результате которых нарушается одно из необходимых условий горения и процесс прекращается.

Увеличить скорость теплоотвода из зоны реакции, иными словами охладить ее, можно путем соприкосновения зоны реакции с менее нагретым негорючим веществом (водой, водным раствором пенообразователя, твердой двуокисью углерода) или увеличением ее удельной поверхности (применением порошковых составов, огнепреградителей). При горении паров и газов, т.е. веществ, не имеющих плоскости раздела с окислителем, в определенных условиях могут применяться оба эти способа. Но при больших площадях горения (F п = 1000¸1600 м 2) наиболее эффективен второй способ теплоотвода. Он заключается в разделении зоны реакции, точнее непосредственно слоя пламени на небольшие объемы, удельная поверхность которых в несколько раз превышает первоначальную поверхность теплоотвода зоны реакции. В стационарных установках тушения для этих целей применяются устройства, называемые огнепреградителями. При тушении пожаров разлитого авиатоплива для увеличения поверхности теплоотвода могут применяться порошковые огнетушащие составы, подаваемые в зону горения под давлением в виде струй.

Уменьшить скорость выделения тепла можно применением еще большего числа способов, так как она зависит от скорости реакции. Воздействовать на скорость реакции можно физическим и химическим способами, а также комплексным применением этих способов.

К физическим способам торможения реакции горения относятся охлаждение горящих веществ (материалов) и объема зоны горения, разбавление реагирующих веществ негорючими, а также изоляция реагирующих веществ от зоны горения (реакции). Прекращение горения охлаждением достигается уменьшением скоростей разложения веществ и материалов, испарения горючих компонентов и поступления их в зону горения. При разбавлении реагирующих веществ происходят понижение концентрации их в зоне реакции, уменьшение скорости реакции и таким образом снижение скорости выделения тепла, а значит, и температуры горения. Прекращение горения изолированием реагирующих веществ от зоны горения (реакции) происходит за счет понижения в ней концентрации одного из реагирующих компонентов системы.

Химический способ торможения реакции горения основан на уменьшении концентрации активных центров в зоне реакции. Это происходит в результате введения в эту зону химически нестойких веществ, которые под влиянием тепловой энергии, выделяемой пламенем, разлагаются на радикалы, способные реагировать с активными центрами, нейтрализуя их.

Практически в настоящее время при тушении пожаров на воздушных судах, потерпевших бедствие, где основным горючим материалом является авиационное топливо, применяются три способа прекращения горения: разбавление, охлаждение и изолирование горящих материалов.

Под средствами тушения в пожарной тактике понимаются: огнетушащие составы, пожарные автомобили и пожарно-техническое вооружение, а также другая техника, которая может быть использована для тушения пожаров. По назначению средства тушения разделяются на: огнетушащие составы, прекращающие горение; средства доставки огнетушащих составов, их получения, а также выполнение других работ на пожаре.

Практически все огнетушащие составы, попадая в зону горения, действуют комплексно, т.е. охлаждают и разбавляют горячие пары, газы и окислитель, изолируют зону горения от горючего вещества или окислителя и ингибируют процесс горения. Однако каждому из них присущ только один основной, особо выраженный, превалирующий над другими эффект. Поэтому каждому способу тушения соответствуют свои огнетушащие составы:

для охлаждения зоны горения (вода и водные растворы пенообразователей в виде сплошных и распыленных струй, твердая двуокись углерода);

для разбавления окислителя или горючих паров и газов (углекислый газ, азот, водяной пар, тонкораспыленная вода, а также водные растворы пенообразователей);

для изолирования зоны горения от горючего вещества или окислителя (воздушно-механические пены различной кратности, химическая пена, порошки, листовые материалы и т.п.);

для химического торможения реакции горения (бромистый этил; составы 3,5 и 4НД; СЖБ; фреоны и др.).

Охлаждающие огнетушащие составы. Механизм прекращения горения охлаждением заключается в снижении температуры зоны горения ниже температуры потухания при горении твердых веществ и материалов и ниже температуры самовоспламенения при горении жидкостей и газов.

Скорость охлаждения горящих твердых материалов и жидкостей огнетушащими составами зависит от контактной поверхности, разности температур и коэффициента теплопередачи. Наибольшей удельной поверхностью (поверхность контакта, приходящаяся на единицу объема огнетушащего состава) обладают газообразные огнетушащие составы.

Поскольку в условиях газообмена диффузионного горения при пожарах на различных объектах, особенно при горении разлитого на значительных площадях авиатоплива, практически невозможно привести газообразные огнетушащие составы в соприкосновение с горящими парами топлива по всей глубине объема зоны горения, при тушении большинства пожаров нашли применение жидкие огнетушащие составы, имеющие большие плотности и теплоемкости.

Одной из таких жидкостей для тушения пожара многих веществ и материалов является вода. Имея большую теплоемкость и теплоту парообразования (~2,26 МДж/кг), вода обладает значительной охлаждающей способностью. Ее термическая стойкость намного превышает термическую стойкость других негорючих жидкостей, применяемых в качестве огнетушащих составов, например четыреххлористого углерода, бромистого этила, бромистого метилена, тетрафтордибромэтана и др. Тушение водой большинства твердых материалов (древесины, пластмасс, тканей и т.п.) безопасно, так как температура их горения не превышает 1300 °С, а разложение воды и ее растворов наступает при температурах, превышающих 1700 °С.

Вода не растворяет такие распространенные твердые горючие материалы, как древесина, пластмассы, ткани, поэтому она при тушении пожаров может применяться также для защиты этих материалов от теплового воздействия. При охлаждении горящих веществ и материалов водой последняя частично испаряется и переходит в паровую фазу, при этом из 1 л воды образуется до 1700 л пара.

Вода, попадая на поверхность горящих материалов, охлаждает ее и частично проникает в поры материала, смачивая его. При этом наблюдается прямая зависимость между размером смоченной поверхности и степенью ее охлаждения. Однако из-за высокого поверхностного натяжения вода обладает незначительным смачивающим эффектом. Понижение поверхностного натяжения воды достигается растворением в ней поверхностно-активных веществ, так называемых смачивателей. Поверхностное натяжение водных растворов смачивателей уменьшается с повышением концентрации последних в растворе. Поскольку это повышает стоимость огнетушащего состава, из-за экономической целесообразности для тушения пожаров применяют растворы смачивателей, имеющих поверхностное натяжение в 2 раза ниже, чем у воды.

В практике пожаротушения в качестве смачивателей применяются различные пенообразователи: ПО-1, ПО-1Д, ПО-3А, ПО-6к, "Сампо", Поток-2 и др. Применение водных растворов пенообразователей вместо воды повышает эффективность тушения в 1,2-1,3 раза, что приводит к уменьшению расхода подачи состава или при том же расходе позволяет тушить большие площади пожара.

При охлаждении горящих веществ, материалов и оборудования вода или водные растворы пенообразователей подаются на их поверхность сплошными или распыленными струями. Применение последних более целесообразно, поскольку при их использовании резко повышается охлаждающий эффект за счет увеличения удельной контактной поверхности огнетушащего состава. Распыленные струи наиболее эффективны при тушении внутриобъемных пожаров, когда можно близко подойти к зоне горения, для тушения свободной поверхности (зеркала) жидкости и истекающих струй легковоспламеняющихся и горючих жидкостей. В данных случаях тушение пламени в основном происходит за счет интенсивного парообразования, вследствие чего снижается температура в зоне горения и уменьшается концентрация горючих компонентов вследствие их разбавления в газовой смеси.

Тонкораспыленные капли водного огнетушащего состава значительно снижают температуру поверхностного слоя горючей жидкости и резко уменьшают скорость ее испарения. Помимо этого, в связи с разницей плотности воды и авиатоплива происходит оседание капель воды под слой авиатоплива, вследствие чего происходит дополнительное охлаждение объема последнего. При соответствующей интенсивности подачи охлаждающего водного огнетушащего состава температура поверхности авиатоплива может стать ниже температуры его самовоспламенения и пламя потухнет. Однако для паров авиатоплив более характерно тушение за счет парообразования.

Интенсивность парообразования зависит от многих факторов, основными из них являются: размер капель воды (степень ее распыления), среднеобъемная температура пламени, скорость движения капель огнетушащего состава в парогазовой среде.

Установлено, что степень распыления воды или водных растворов пенообразователя оказывает большое влияние на механизм прекращения горения. Если средние размеры капель распыленной воды превышает 500 мкм, то они не успевают испариться в объеме зоны горения и прекращают горение охлаждением горящих веществ. Капли размерами от 150 до 500 мкм успевают частично испариться в объеме зоны горения. Капли со средним размером 100 мкм успевают испариться в объеме зоны горения, переходят в пар и прекращают горение разбавлением горючих паров и газов.

Распыленные струи воды и водного раствора пенообразователей могут использоваться для осаждения высокотоксичных продуктов неполного сгорания, дыма, а также для охлаждения прогретых металлических строительных конструкций, оборудования и газовоздушных объемов. Эти струи могут использоваться в качестве экранов для защиты от теплового излучения пламени.

Однако вода и водные растворы пенообразователей обладают электропроводностью, поэтому при горении электросетей и установок, находящихся под напряжением, перед началом тушения необходимо проводить их обесточивание.

Нельзя также подавать воду и ее растворы на вещества, которые при взаимодействии с ними образуют горючие газы с выделением значительного количества тепла (карбид кальция СаС 2 , окись кальция СаО).

Следующим недостатком воды и водных растворов пенообразователей является то обстоятельство, что вода и ее растворы замерзают при отрицательных температурах наружного воздуха, а это, в свою очередь, вызывает определенные трудности при тушении пожаров.

Для прекращения горения способом охлаждения, кроме воды и водных растворов пенообразователей применяется твердая двуокись углерода, получаемая с помощью раструбов-снегообразователей углекислотного пожарного оборудования. Твердая (снежная) двуокись углерода представляет собой мелкокристаллическую массу с плотностью 1,54 т/м 3 при температуре - 79 °С, при нагревании переходит в газ, минуя жидкое состояние (сублимируется), что позволяет тушить ею вещества и материалы, портящиеся при попадании на них воды или водных растворов. Температура возгонки твердой двуокиси углерода равна - 78,5 °С. Теплота испарения твердой двуокиси углерода весьма незначительна и составляет 572,75 кДж/кг, т.е. почти в 4 раза меньше, чем у воды. В связи с этим при ее применении эффект охлаждения создается в основном за счет значительного перепада температур зоны горения и огнетушащего состава. Наиболее быстро твердая двуокись углерода охлаждает газовые объемы и горящие жидкости, так как они имеют с ней большую поверхность соприкосновения, значительно медленнее происходят охлаждение и прекращение горения твердых веществ и совсем плохо тушатся тлеющие очаги горения.

На ВС твердая двуокись углерода может применяться для тушения пожаров силовых установок, багажных отсеков, технических отсеков и каналов, пассажирских салонов при отсутствии там людей, не имеющих средств защиты органов дыхания, а также различных электроустановок, находящихся под напряжением.

Твердой двуокисью углерода нельзя тушить пожары в пассажирских салонах при наличии там пассажиров и членов экипажа, силовых установок и органов приземления при горении магниевых сплавов. Нельзя ею тушить и пожары шасси, так как это может вызвать деформацию металлических деталей и разрыв резины пневматиков в результате их резкого переохлаждения.

Разбавляющие огнетушащие составы. Механизм прекращения горения разбавлением заключается в снижении концентрации окислителя (кислорода воздуха) до 15% объемных и ниже, что приводит к снижению скорости реакции горения и дальнейшему прекращению процесса горения.

Способ прекращения горения разбавлением применяется при тушении пожаров в замкнутых объемах, имеющих малую площадь проемов: силовых установках, багажных отсеках и пассажирских салонах воздушных судов, сушильных камерах, производственных помещениях и т.п. Этот способ может применяться и при тушении открытых пожаров - разливов авиационных топлив на незначительных площадях или горения жидкости в резервуаре малого диаметра. При данном способе тушения огнетушащие составы подаются либо в воздух, поступающий в зону горения, либо в горючие вещества. Для этого применяются тонкораспыленная вода, газообразная двуокись углерода, водяной пар, азот и другие инертные газы.

Газообразная двуокись углерода, являющаяся основным разбавляющим огнетушащим составом, представляет собой реальный газ с химической формулой СО 2 , в нормальных условиях без цвета и запаха, тяжелее воздуха в 1,5 раза, кислотообразующий окисел. В связи с этим она при попадании на слизистую оболочку губ и рта вызывает кисловатый привкус. При температуре, равной 0,9 и давлении 3,6 МПа она легко переходит в жидкое состояние. Из 1 кг жидкой двуокиси углерода получается около 509 л газообразной двуокиси углерода. Транспортируют и хранят ее в стальных транспортных баллонах.

Огнетушащая концентрация при тушении пожаров внутри помещений для газообразной двуокиси углерода составляет от 30% объемных и выше. При тушении силовых установок воздушных судов ее концентрация должна быть не менее 35% к объему установки. Поскольку процентное содержание огнетушащего состава в процессе тушения определить практически невозможно, то в практике тушения пожаров наравне с объемной принята массовая концентрация, отнесенная к единице объема, равная для тушения внутри помещений 0,594 кг/м 3 , а для силовых установок 0,7 кг/м 3 .

Основным недостатком газообразной двуокиси углерода как огнетушащего состава является ее высокая огнетушащая концентрация, в то время как уже 20%-ная концентрация двуокиси углерода в воздушном объеме помещения смертельна для человека при дыхании в течение нескольких секунд. В связи с этим газообразную двуокись углерода нельзя применять в качестве объемного средства тушения в помещениях, где находятся люди. При применении двуокиси углерода в качестве объемного средства тушения личный состав пожарно-спасательных подразделений, находящийся в горящем помещении, должен использовать индивидуальные средства защиты дыхания.

Двуокись углерода нельзя применять для тушения пожаров магниевых и титановых сплавов из-за высокой температуры зоны горения (свыше 3000 °С), так как при температурах, равных 3000 °С и выше, двуокись углерода диссоциирует на углерод и кислород и в зону горения из 1 кг двуокиси углерода поступает около 730 г атомарного кислорода, который вступает в реакцию d металлом и усиливает его горение. Реакция идет по уравнениям:

Mg + СО 2 = MgO + СО; Mg + СО = MgO + С.

Углекислотное оборудование в виде передвижных огнетушителей ОУ-25, ОУ-80 и ОУ-400, как правило, используется в местах стоянки воздушных судов на открытом воздухе. Необходимо при их применении учитывать, что температура - 25 °С является критической для данного оборудования, так как при более низких температурах давление двуокиси углерода, находящейся в баллоне в газовой фазе, становится незначительным и производительность углекислотного оборудования резко снижается. При температурах наружного воздуха - 60 °С и ниже вся двуокись углерода в огнетушителях переходит в жидкое состояние и замерзает. При последующих повышениях температуры наружного воздуха или самого углекислотного оборудования его производительность восстанавливается полностью. Газообразная двуокись углерода в качестве объемного средства пожаротушения в стационарных установках может применяться для защиты помещений объемом до 3000 м 2 .

Водяной пар как огнетушащий состав может применяться для тушения пожаров на наземных объектах гражданской авиации в достаточно герметизированных помещениях объемом до 500 м 3 , оборудованных стационарной системой пожаротушения (сушильных камерах, насосных станциях склада службы ГСМ и т.п.). При этом используется водяной пар паросиловых установок авиапредприятия. Пар может быть насыщенным или перегретым. Перегретый пар более эффективен, так как при одинаковых температурах и давлении имеет более высокую плотность. Огнетушащая концентрация водяного перегретого пара составляет 35% объемных и выше. Время тушения водяным паром должно быть не менее 1 мин при интенсивности подачи 0,005 кг/(м 3 ×с). После прекращения горения пар подается еще не менее 2 мин.

Изолирующие огнетушащие составы. Механизм прекращения горения изолированием заключается во временном разобщении зоны горения с горючим материалом или окислителем. В практике тушения для этого применяют: твердые листовые материалы (металлические листы, асбокартон, асбоцементные плиты и т.п.); твердые волокнистые материалы (асбестовое полотно, войлок, брезент и другие плотные ткани); негорючие сыпучие материалы (песок, порошки, различные флюсы); жидкие материалы (химическую пену, воздушно-механические пены различной кратности и т.п.); газообразные вещества (продукты взрыва или сгорания).

Способ изоляции может применяться для тушения различных веществ и материалов в любой фазе (твердых, жидких и газообразных).

Твердые листовые, волокнистые и негорючие сыпучие материалы применяются, как правило, в качестве первичных средств пожаротушения для ликвидации горения незначительных очагов, имеющих малые площади и объемы.

Для тушения развившихся пожаров в зависимости от вида горючего материала в настоящее время применяют разные виды пен: химические и воздушно-механические различной кратности. В основном пены применяются для тушения легковоспламеняющихся и горючих жидкостей, а также для защиты от воспламенения различных веществ и материалов.

Пены представляют собой дисперсную систему, в которой дисперсной фазой является какой-либо газ или смесь газов (углекислый газ, азот, воздух и т.п.), а дисперсионной средой какая-либо жидкость (чаще всего водные растворы пенообразователей). Чистая вода из-за высокого поверхностного натяжения не может образовывать пену, поэтому для получения пены используют водные растворы химических, органических и синтетических веществ и составы, которые резко снижают поверхностное натяжение воды. Эти вещества называются поверхностно-активными. К ним относятся сульфокислоты, сапонин, экстракт солодкового корня, коричный корень, белки и др.

Химическая пена получается в результате реакции образования негорючих газов в жидкой среде. Для пожаротушения на объектах авиапредприятий применяется химическая пена, получаемая в огнетушителях ОХП и ОХВП в результате следующих реакций:

2NаНСО 3 + H 2 SO 4 = Nа 2 SO 4 + Н 2 О + 2СО 2 ­,

6NaHCO 3 + Fe 2 (SO 4) 3 = 3Na 2 SO 4 + 2Fe(OH) 2 + 6CO 2 ­.

Выделяющаяся в результате реакции газообразная двуокись углерода образует в пене газовые пузырьки, а поскольку она является нейтральным газом, это повышает огнетушащую эффективность пены. Плотность этой пены не превышает 0,2 т/м 3 , поэтому она может применяться для тушения горящих легковоспламеняющихся и горючих жидкостей.

Воздушно-механические пены получаются в пенных стволах и генераторах пен средней и высокой кратности путем механического перемешивания воздуха с водным раствором пенообразователей (ПО-1, ПО-1Д, ПО-3А, ПО-6к, "Сампо", Поток-2 и др.). Воздушно-механические пены могут содержать от 83 до 99,6% воздуха и от 17 до 0,4% водного раствора пенообразователя.

Пены, применяемые для тушения пожаров, характеризуются рядом параметров, основными из которых являются краткость и стойкость. Кратностью пены K п называется отношение объема пены W п к объему раствора W p , из которого она получена: K п = W п /W р . Химическая пена обладает кратностью, равной 5, а воздушно-механические пены делятся на следующие виды: низкой кратности, имеющей значение кратностей от 8 до 30, и расчетную кратность 10; средней кратности, имеющей значения кратностей от 80 до 250, и расчетную кратность 100. Воздушно-механическая пена низкой кратности имеет плотность около 0,11 т/м 3 , а воздушно-механическая пена средней кратности около 0,004 т/м 3 . Таким образом, воздушно-механические пены могут применяться при тушении пожаров легковоспламеняющихся и горючих жидкостей.

Изолирующая способность пены определяется ее стойкостью, т.е. способностью сохраняться определенное время. С момента получения пены в ней начинаются процессы, приводящие к ее разрушению. Они происходят самопроизвольно и связаны со стеканием жидкости в межпузырьковых пленках, что приводит к разрыву пузырьков. При внешних воздействиях разрушение пены ускоряется. Слой пены, нанесенный на поверхность горящей жидкости, сверху подвергается воздействию теплового излучения пламени и потоков горячих продуктов сгорания, снизу - нагретой до кипения жидкости. Тепловое излучение и продукты сгорания ускоряют процесс разрушения пены незначительно. Решающее воздействие на стойкость пены оказывают горящая жидкость и ее пары. При повышении температуры поверхностного слоя горючей жидкости упругость ее паров быстро возрастает. Для каждого вида легковоспламеняющихся и горючих жидкостей существует своя критическая температура, при которой пена, нанесенная на ее поверхность, полностью утрачивает свои изолирующие свойства. Например, для бензинов эта температура приблизительно равна +70 °С. Это связано с тем, что при высокой температуре жидкости размеры воздушных пузырьков в пене вследствие прогрева увеличиваются настолько, что происходит их слияние с последующим прорывом пенного слоя в целом.

Степень разрушения пены определяется скоростью выделения из нее жидкой фазы (раствора пенообразователя). Стойкость пены принято характеризовать временем выделения из нее половины раствора пенообразователя, из которого она получена. При температуре +20 °С наибольшей стойкостью обладает химическая пена, несколько меньшей - воздушно-механическая пена низкой кратности и еще меньшей - пена средней кратности. Необходимо учитывать то, что чем выше температура кипения горючей жидкости, подвергаемой тушению, тем быстрее будет разрушаться пена на ее поверхности.

Процесс тушения пенами идет одновременно по двум направлениям. Выделяющийся раствор пенообразователя охлаждает поверхностный слой торящей жидкости или твердого материала, снижая испаряемость и упругость их паров. Оставшийся слой пены препятствует проникновению горючих паров и газов в зону горения.

Технологически процесс тушения пенами пламени легковоспламеняющихся и горючих жидкостей происходит следующим образом. Пена в виде компактных струй подается на поверхность жидкости, по которой она растекается и накапливается. По поверхности холодной жидкости воздушно-механические пены низкой и средней кратности движутся со средней скоростью около 0,34 м/с, а при нанесении пены на поверхность горящей жидкости скорость ее движения уменьшается по мере удаления от пеногенерирующего устройства. Под воздействием теплового излучения пламени и нагретой горючей жидкости пена постоянно разрушается, и в определенный момент количество разрушающейся пены становится равным количеству пены, подаваемой в зону горения. Наступает состояние подвижного равновесия. Для того чтобы пена могла продвинуться на большие расстояния и покрыть всю поверхность горящей жидкости, ее расход должен превышать убыль вследствие разрушения в зоне горения.

При тушении пожаров, происходящих в помещениях, имеющих незначительную площадь проемов, изоляция может создаваться закрытием оконных, дверных и прочих проемов с дополнительным их уплотнением. В данном случае механизм прекращения горения состоит в том, что в горящем помещении отсутствует аэрация, вследствие чего концентрация кислорода в воздушном объеме помещения падает, а концентрация негорючих компонентов (двуокиси углерода, окиси углерода, паров воды и т.п.) растет. С уменьшением парциального давления кислорода диффузия его в зону горения уменьшается, что приводит к уменьшению температуры зоны горения ниже температуры самовоспламенения, в связи с чем горение прекращается. Этот прием тушения имеет существенный недостаток, заключающийся в том, что при достижении 30% концентрации смеси двуокиси углерода и паров воды пламенное горение переходит в долго продолжающееся тлеющее горение. Данный способ тушения может применяться при пожарах на объектах гражданской авиации в качестве временного варианта, для того чтобы снизить интенсивность горения и замедлить скорость распространения пожара до прибытия пожарно-спасательных подразделений и проведения активного тушения с применением огнетушащих составов.

Огнетушащие составы для химического торможения реакции горения. Механизм прекращения горения способом химического торможения реакции состоит в том, что в зону горения подаются огнетушащие составы, вызывающие обрыв цепных реакций горения.

Эти огнетушащие составы обладают следующими свойствами: имеют низкую температуру кипения и при нагревании легко переходят в парообразное состояние; имеют малую термическую стойкость; разлагаются на части, активно реагирующие с промежуточными продуктами горения с образованием негорючих веществ.

Данным требованиям отвечают галоидированные углеводороды, т.е. органические соединения, в которых атомы водорода замещены атомами галогенов. В практике тушения пожаров на наземных объектах и воздушных судах гражданской авиации применяются: бромистый метилен (СН 2 Вr 2), бромистый этил (С 2 Н 6 Вr), трифтор-бромметан (СF 3 Вr), тетрафтордибромэтан (С 2 F 4 Вr 2). Особенностью этих веществ является их высокая огнетушащая способность при сравнительно небольших концентрациях, которые в несколько раз ниже концентраций газовых и паровых огнетушащих составов (СO 2 , N 2 , водяного пара и т.п.).

Высокая огнетушащая эффективность галоидированных углеводородов обусловлена повышенной химической активностью продуктов их термического разложения, активно реагирующих с промежуточными продуктами горения:

Н 2 + O 2 ® 2OH - - зарождение цепи;

ОН + Н 2 ® Н 2 О + H" - продолжение цепи.

При введении в зону горения галоидированных углеводородов происходит обрыв цепи реакции горения

C 2 H 5 Br + Н" ® Са 2 Н 5 " + HBr;

C 2 F 4 Br 2 + H" ® C 2 F 4 Br" + HBr;

C 2 F 4 Br" + Н" ® С 2 F 4 " + HBr.

Помимо дезактивации атомарного водорода происходит ингибирование радикалов ОН~:

С 2 Н 5 + ОН - ® С 2 Н 5 ОН.

Недостатками галоидированных углеводородов как огнетушащих составов являются их высокая коррозионная активность по отношению к магниевым и алюминиевым сплавам, основным материалам, применяющимся в самолетостроении, а также высокая токсичность продуктов пиролиза.

Порошковые огнетушащие составы. В последнее время все большее значение получают порошковые огнетушащие составы, которые могут применяться для тушения практически всех видов горения, включая пожары магниевых сплавов, независимо от площади и объема пожара. Для подачи огнетушащих составов в зону горения используются передвижные и стационарные средства. Механизм действия порошковых огнетушащих составов весьма сложен. Основными факторами, влияющими на реакцию горения, являются: прекращение горения за счет увеличения теплоотвода из пламени (зоны реакции) - так называемый принцип огнепреградителя; разбавление паров горючего вещества порошковым облаком и газообразными продуктами разложения порошка; ингибирование процесса горения продуктами пиролиза порошка, а также гетерогенным обрывом цепей реакции на поверхности твердых частиц порошка; охлаждение объема зоны горения в результате нагрева частиц порошка.

Порошковые огнетушащие составы имеют ряд качеств, способствующих их внедрению в практику пожаротушения: быстро ликвидируют горение при сравнительно малом расходе; порошковое облако неэлектропроводно; экранируют тепловое излучение пламени; не замерзают; при отсутствии влаги не вызывают коррозии металлов; не оказывают воздействия на вещества и материалы, подвергаемые тушению.

Однако порошковые огнетушащие составы имеют недостатки, значительно ограничивающие их применение: не обладают достаточным охлаждающим эффектом; склонны к комкованию и слеживаемости; за порошковым облаком не просматривается зона горения.

В нашей стране разработаны и применяются порошковые огнетушащие составы общего назначения серии ПСБ (на основе бикарбоната натрия), серий ПФ, П1, П1А (на основе фосфорно-аммонийных солей) и специальные составы ПС, СИ, К-30 и др. Порошковый состав К-30 может применяться для тушения всех видов авиационных пожаров, включая пожары магниевых сплавов. В табл. 5 приведены химические составы отдельных видов порошков, применяемых для тушения пожаров на объектах народного хозяйства и гражданской авиации.

Горение – экзотермическая реакция окисления горящего вещества, сопровождающаяся хотя бы одним из 3-х факторов:

  • пламенем
  • свечением
  • выделением дыма

Треугольник горения

Необходимы 3 условия для горения:

  • Горючие вещества – ГВ
  • Окислитель -О2
  • Источник зажигания – ИЗ.

В зависимости от среды горения различают 2 вида горения:

  • Пламенное – горение вещества и материалов сопровождается пламенем. (зона горения над поверхностью ГВ). При пожаре горят большинство ГВ, способные при нагреве выделять горючие продукты, такие как (древесина, ткани, нефтепродукты, каучук, резина, пластмассы и т.д.);
  • Беспламенное – в виде тления накала ГВ горение на поверхности. (древесный уголь, кокс, атрацит, сажа, торф, и др., не способные при нагреве выделять летучие продукты);
  • Дым – аэрозоль (дисперсная система) образуемый жидкими или твердыми продуктами неполного возгорания ГВ (СО, С, сажа).

1) пожары твердых горючих веществ и материалов (А);

2) пожары горючих жидкостей или плавящихся твердых веществ и материалов (В);

3) пожары газов (С);

4) пожары металлов (D);

5) пожары горючих веществ и материалов электроустановок, находящихся под напряжением (Е);

6) пожары ядерных материалов, радиоактивных отходов и радиоактивных веществ (F).

Под распространяющимися пожарами понимают такие пожары, у которых происходит увеличение геометрических размеров (длины, высоты, ширины, радиуса) во времени.

Под нераспространяющимися пожарами понимают такие пожары, у которых геометрические размеры остаются неизменными во времени.

Подземными пожарами называются пожары, расположенные ниже уровня земли, на любой глубине.

Под наземными пожарами понимают такие пожары, которые находятся на высоте, достигаемой при помощи .

Под средневысотными пожарами понимают пожары, расположенные выше уровня поверхности земли, то есть до высоты, которая достигается при использовании пожарных автолестниц и подъемников.

Высотными пожарами называются пожары, расположенные выше 30 метров от уровня поверхности земли.

На водных пространствах (акваториях ) : , а также нефтегазодобывающих платформ и др.

Пространство, в котором развивается пожар, можно условно разделить на три зоны:

  • зону горения;
  • зону теплового воздействия;
  • зону задымления;
  • горючее вещество.

Зона горения характеризуется геометрическими и физическими параметрами: площадью, объемом, высотой, горючей загрузкой, скоростью выгорания веществ (линейная, массовая, объемная) и др.

Зона теплового воздействия – часть, примыкающая к зоне горения. В этой части происходит процесс теплообмена между поверхностью пламени и окружающими строительными конструкциями, материалами. Передача тепла осуществляется конвекцией, излучением, теплопроводностью. Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без средств тепловой защиты.

Зона задымления – пространство, которое заполняется продуктами сгорания (дымовыми газами) в концентрациях, создающих угрозу для жизни и здоровья людей, затрудняющих действия пожарных подразделений при работе на пожарах.

Опасные факторы пожара

ОПАСНЫЙ ФАКТОР ПОЖАРА – фактор пожара, воздействие которого на людей и (или) материальные ценности может привести к ущербу.

Опасными факторами, воздействующими на людей и материальные ценности, являются:

  1. пламя и искры;
  2. повышенная температура окружающей среды;
  3. токсичные продукты горения и термического разложения;
  4. пониженная концентрация кислорода.

К вторичным проявлениям опасных факторов пожара, воздействующим на людей и материальные ценности, относятся:

  • осколки, части разрушенных аппаратов, агрегатов, установок, конструкций;
  • радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок;
  • электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов;
  • опасные факторы взрыва по ГОСТ 12.1.010, происшедшего в следствие пожара.

Читайте в отдельной статье больше информации:

Условия и механизм прекращения горения

Для прекращения горения необходимо либо снизить тепловыделение в зоне горения фронта пламени, либо увеличить теплоотвод из зоны горения.

Это может быть достигнуто различными путями:

Охлаждением поверхности горючего вещества или материала;

Изоляцией зоны горения от источника горючих паров и окислителя (например, герметизацией либо горящего вещества, либо объема, в котором протекает процесс горения);

Разбавлением горючих газов, паров и окислителя, поступающих в зону горения инертными газами;

Ингибированием процессов горения (т.е. введением в исходную горючую смесь или в зону горения ингибиторов цепных реакций окисления).

Огнетушащее вещество (ОТВ) – это вещество, обладающее физико-химическими свойствами, позволяющими создать условия для прекращения горения.

Применяемые огнетушащие вещества и способы тушения

Основные характеристики огнетушащих веществ

Огнетушащая эффективность – это минимальное количество ОТВ, израсходованное на тушение модельного очага пожара данного класса. Для объемного способа тушения огнетушащая эффективность различных ОТВ зависит от многих факторов: природы горючего вещества, условий горения, свойств ОТВ, способов его применения и т.д.

Интенсивность подачи огнетушащего вещества (I) – это расход ОТВ во времени на единицу защищаемой поверхности или объема. Размерность при поверхностном способе тушения – , для объемного способа – , для линейного способа . I = Qотв / (П · τт · 60);

Удельный расход ОТВ (qуд) – это количество огнетушащего вещества (кг, л), которое требуется на единицу расчетного параметра пожара (м3, м2, м) для его успешного тушения:

qуд = Q отв / Пп.

Краткая характеристика, область применения огнетушащих веществ.

Вода – основное огнетушащие вещества охлаждения, наиболее доступные и универсальное.

Вода отнимает от горящих материалов и продуктов горения большое количество теплоты. При этом она частично испаряется и превращается в пар.

(из 1л воды образуется 1700 л пара). Благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны очага пожара.

Недостатки воды:

  • Электропроводна
  • Сравнительно высокая т-ра замерзания
  • Большая плотность (нельзя применять при тушении нефтепродуктов)
  • Низкий коэффициент использования в виде компактных струй.

Углекислота – тяжелея воздуха в 1,5 раза, без запаха.

  • Их 1 кг кислоты образуется 500 л газа.
  • Теплота испарения при -78,5 0С.
  • Не электропроводна.
  • Не взаимодействует с горючими веществами.

ВМП – воздушно механическая пена.. – образуется из раствора воды с пенообразователем ПО-1.

Обладает: стойкостью, дисперстностью, кратностью, вязкостью, охлаждающими и изолирующими свойствами.

Может быть:

  • низкой кратности К < 10,
  • средний кратности К = 100,
  • высокой кратности К < 200.

Подается из стволов: СВП-4; 8; 12 м3/мин

ГПС-100; 600; 2000 л/мин.

Недостаток: более электропроводна чем вода.

Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и.т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.

Тонко распыленная вода (диаметр капель меньше 100 мк) – для получения ее применяют насосы, создающие давление свыше 2-3 МПа (20-30 атм) и специальные стволы распылители.

Диоксид углерода применяется для тушения пожаров электрооборудования и электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им, как и твердый углекислотой, категорически запрещено тушение щелочных и щелочно-земельных материалов.

Азот главным образом применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния. Лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага). К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.

Пространство, в котором развивается пожар, условно подразделяется на три зоны:

Ø зона горения,

Ø зона теплового воздействия;

Ø зона задымления.

Зона горения - часть пространства, в котором протекают процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) в объеме диффузионного факела пламени. Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным). При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления), при беспламенном – раскаленная поверхность горящего вещества.

Примером беспламенного горения может служить горение кокса, древесного угля, тление, например, войлока, торфа, хлопка и т.д.

Зона теплового воздействия - часть пространства, примыкающая к границам зоны горения. В этой части пространства протекают процессы теплообмена между поверхностью пламени, окружающими ограждающими конструкциями и горючими материалами.

Передача теплоты в окружающую среду осуществляется тремя способами:

Ø конвекция,

Ø тепловое излучение,

Ø теплопроводность.

Конвекция - перенос тепловой энергии путем перемещения или перемешивания частиц жидкости или газа.

Тепловое излучение (лучистый теплообмен) - перенос тепловой энергии в виде электромагнитных волн.

Теплопроводность - перенос тепловой энергии при непосредственном соприкосновении веществ, материалов и конструкций.

Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без тепловой защиты.

Зона задымления - часть пространства, примыкающего к зоне горения, в котором невозможно пребывание людей без защиты органов дыхания и в котором затрудняются боевые действия подразделений пожарной охраны из-за недостатка видимости.

В процессе развития пожара различают три стадии:

Ø начальная стадия,

Ø основная (развитая) стадия,

Ø конечная стадия.

Эти стадии характерны для всех пожаров независимо от того, где произошел пожар: на открытом пространстве или в помещении.

I фаза (10 мин) - начальная стадия , включающая переход возгорания в пожар (1-3 мин) и рост зоны горения (5-6 мин).

В течение первой фазы происходит преимущественно линейное распространение огня вдоль горючего вещества или материала. Горение сопровождается обильным дымовыделением, что затрудняет определение места очага пожара. Среднеобъемная температура повышается в помещении до 200°С (темп увеличения среднеобъемной температуры в помещении 15°С в 1 мин). Приток воздуха в помещение сначала увеличивается, а затем медленно снижается. Поэтому очень важно в это время обеспечить изоляцию данного помещения от наружного воздуха (не рекомендуется открывать или вскрывать окна и двери в горящее помещение. В некоторых случаях, при достаточном обеспечении герметичности помещения, наступает самозатухание пожара) и вызвать пожарные подразделения при первых признаках пожара (дым, пламя). Если очаг пожара виден, необходимо по возможности принять меры к тушению пожара первичными средствами пожаротушения до прибытия пожарных подразделений.

Продолжительность I фазы составляет 2-30% от общей продолжительности пожара.

II фаза (30-40 мин) - стадия объемного развития пожара.

Бурный процесс, температура внутри помещения поднимается до 250-300 о С, начинается объемное развитие пожара, когда пламя заполняет весь объем помещения, и процесс распространения пламени происходит уже не поверхностно, а дистанционно, через воздушные разрывы. Разрушение остекления через 15-20 мин от начала пожара. Из-за разрушения остекления приток свежего воздуха резко увеличивает развитие пожара. Темп увеличения среднеобъемной температуры - до 50°С в 1 мин. Температура внутри помещения повышается с 500-600 до 800-900°С. Максимальная скорость выгорания - 10-12 мин.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»